1. Draw the transfer characteristics $\left(\mathrm{V}_{\mathrm{o}}\right.$ vs $\left.\mathrm{V}_{\mathrm{i}}\right)$ for the following circuit. Draw the important properties and explain in detail the operation of this circuit. Assume that the diode is ideal, except for a forward resistance, R_{f}, of 20Ω.

2. Draw the output waveform for one cycle of the input signal for the circuits below. The input is a sinusoidal waveform and has a peak voltage, V_{p}. Potential barrier for each diode is to be considered, but $\left|\mathrm{V}_{\mathrm{BB}}\right| \gg\left|\mathrm{V}_{\text {potential-barrier }}\right|$.

(e)

(f)

3. (a) Consider the following circuit. V_{1} to V_{4} are the inputs and V_{0} is the output of the circuit. Assume that the voltage drop across the diode is 0.6 V . Determine V_{o} when the input voltages are:
(i) $V_{1}=V_{2}=V_{3}=V_{4}=0 \mathrm{~V}$
(ii) $\quad V_{1}=V_{2}=0, V_{3}=V_{4}=-4 \mathrm{~V}$
(iii) $\quad \mathrm{V}_{1}=\mathrm{V}_{2}=-5 \mathrm{~V}, \mathrm{~V}_{3}=\mathrm{V}_{4}=-7 \mathrm{~V}$
(iv) $\quad V_{1}=V_{2}=V_{3}=V_{4}=-5 \mathrm{~V}$

(b) Consider the following circuit. V_{1} to V_{4} are the inputs and V_{0} is the output of the circuit. Assume that the voltage drop across the diode is 0.6 V . Determine V_{o} when the input voltages are:
(i) $\quad V_{1}=V_{2}=V_{3}=V_{4}=0 \mathrm{~V}$
(ii) $V_{1}=V_{2}=0, V_{3}=V_{4}=3 \mathrm{~V}$
(iii) $V_{1}=V_{2}=2 \mathrm{~V}, \mathrm{~V}_{3}=\mathrm{V}_{4}=3 \mathrm{~V}$
(iv) $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=3 \mathrm{~V}$

4. D_{1} and D_{2} in the circuit below are ideal diodes. Sketch the transfer characteristics for $-20 \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$.

5. Draw the transfer characteristics $\left(\mathrm{V}_{2}\right.$ vs $\left.\mathrm{V}_{1}\right)$ for the following diode circuit. The diodes are non-ideal (each has its own potential barrier and forward resistor).

6. Determine the relationship between i_{a} and V_{a} for the following circuit. Assume that each junction diode is modeled by the ideal piecewise linear diod.

7. If the diodes are assumed ideal, determine I and V for the circuits below:

(b) +10 V

8. Draw the $\mathrm{V}_{\text {out }}$ waveform referring to the amplitude and time of the V_{in}. Ensure that the important voltages are labeled on the diagram including the peak value of $\mathrm{V}_{\text {out }}$. The forward voltage drop is 0.7 V . Forward resistance is neglected.

